1、常用转动惯量公式表:对于细杆:当回转轴过杆的中点(质心)并垂直于杆时I=mL2/T2;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL2/3:其中m是杆的质量,L是杆的长度。对于圆柱体:当回转轴是圆柱体轴线时I=m2/2:其中m是圆柱体的质量,r是圆柱体的半径。
2、转动惯量计算公式 对于细杆:当回转轴过杆的中点(质心)并垂直于杆时I=mL/I;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL/3;其中m是杆的质量,L是杆的长度。
3、常用转动惯量表达式:I=mr。其中m是其质量,r是质点和转轴的垂直距离。转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度。计算刚体的转动惯量时常会用到平行轴定理、垂直轴定理(亦称正交轴定理)及伸展定则。
4、I=mr^2。转动惯量的计算公式是:I=mr^2。转动惯量(MomentofInertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,通常以/或J表示。刚体绕轴转动惯性的度量。
5、转动惯量的公式为:I=Σ(m* r^2)。我们可以把物体分割成许多小的质点,每个质点都有自己的质量。这些质点围绕旋转轴分布,每个质点到旋转轴的距离都不同。我们将每个质点的质量与其到旋转轴的距离的平方相乘,然后将这些乘积相加。这样我们就得到了物体的总转动惯量。
6、转动惯量计算公式 对于细杆:当回转轴过杆的中点(质心)并垂直于杆时I=mL*2/I*2;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL*2/3;其中m是杆的质量,L是杆的长度。
根据刚体转动惯量的叠加原理,一体的转动惯量减空盘转动惯量就能得到待测刚体的转动惯量。验证平行轴定理也基于此,也要先测空盘转动惯量,然后再把两个质量相同几何尺寸也一模一样的两个小圆柱体放在空盘上。
设以某初始角速度转动的空实验台转动惯量为J1,未加砝码时,在摩擦阻力矩Mμ的作用下,实验台将以角加速度β1作匀减速运动,即:(2)将质量为m的砝码用细线绕在半径为R的实验台塔轮上,并让砝码下落,系统在恒外力作用下将作匀加速运动。若砝码的加速度为a,则细线所受张力为T=m(g-a)。
使转动的轴线与悬线的轴线重合,两盘如果不水平的话,就会导致摆动时不做简谐振动,出现螺线摆运动 从而导致误差偏大。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。
对于几何形状简单、质量分布均匀的刚体可以直接用公式计算出它相对于某一确定转轴的转动惯量。 而对于外形复杂和质量分布不均匀的物体只能通过实验的方法来精确地测定物体的转动惯量,因而实验方法就显得更为重要。测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。
求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。
转动惯量计算公式:对于细杆:当回转轴过杆的中点(质心)并垂直于杆时I=mL/I;其中m是杆的质量,L是杆的长度。当回转轴过杆的端点并垂直于杆时I=mL/3;其中m是杆的质量,L是杆的长度。
转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,其数学表达式:式中:J - 转动惯量;mi - 刚体的某个质点的质量;ri - 该质点到转轴的垂直距离。这是刚性体转动惯量推导计算的基本依据。
刚体绕质心转动是一种常见的转动情况,例如自行车轮子的转动、体操运动员在悬挂状态下的转动等。对于刚体绕质心转动的转动惯量,可以通过几何形状和质量分布来计算。例如,对于一个均匀圆盘,其转动惯量可以用公式I=1/2*m*r^2来计算,其中m为圆盘的质量,r为圆盘的半径。
常见的转动惯量有:两端开通的薄圆柱壳,两端开通的厚圆柱,实心圆柱,薄圆盘,圆环,实心球,空心球等。转动惯量是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。
对于质点系(即由多个质点组成的系统),转动惯量I = (m_i*r_i^2),其中表示对所有质点求和,m_i和r_i分别是第i个质点的质量和到转动轴的距离。 对于一些特殊形状的刚体,如圆环、圆盘、圆柱等,转动惯量有特定的公式。
1、转动惯量的表达式为 若刚体的质量是连续分布的,则转动惯量的计算公式可写成 (式中mi表示刚体的某个质元的质量,r表示该质元到转轴的垂直距离,ρ表示该处的密度,求和号或积分号遍及整个刚体。)转动惯量的量纲为[L][M],在SI单位制中,它的单位是kg·m。
2、刚体的转动惯量跟刚体的形状,质量,密度分布,转轴位置等有关。
3、直接用公式:L=Jw,其中L是就是所求刚体的角动量,J是刚体对转轴的转动惯量,w是转动角速度。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I 或J表示,SI 单位为 kg·m。对于一个质点,I = mr,其中 m 是其质量,r 是质点和转轴的垂直距离。
对于立方体:当回转轴为其中心轴时, ;当回转轴为其棱边时;当回转轴为其体对角线时, ;L为立方体边长。对于实心球体:当回转轴为球体的中心轴时,;当回转轴为球体的切线时, ;R为球体半径。
则:原式=m(Rc+R0)*(Rc+R0)=m(Rc^2+R0^2+2Rc*R0)两侧对mRc求和,其中2mRc*R0一项中mRc是对质心的矢量,该项求和后为0,定理结果显然实验测量转动惯量在力学实验中一直都是用“三线摆测转动惯量”,转动惯量和摆周期的平方成正比,这个实验是能验证平行轴定理的。
直接用公式:L=Jw,其中L是就是所求刚体的角动量,J是刚体对转轴的转动惯量,w是转动角速度。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I 或J表示,SI 单位为 kg·m。对于一个质点,I = mr,其中 m 是其质量,r 是质点和转轴的垂直距离。
刚体刚体,就是 rigid body,就是形状不能改变,自然地,质量总数不能变,连质量的分布规律都不能改变。刚体的数学定义是,在运动中,任何两点之间的距离保持不变。